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LETTER TO THE EDITOR 

Shifted 1/N expansion and scalar potential in the 
Dirac equation 

R K Roychoudhuryt and Y P Varshni 
Department of Physics, University of Ottawa, Ottawa, Ontario KIN 6N5, Canada 

Received 28 July 1987 

Abstract. The shifted I /  N expansion method has been applied to a linear scalar potential 
in the Dirac equation to obtain the relativistic energy eigenvalues. The results are compared 
with those obtained by Rein and by Gunion and Li. 

In recent years the shifted 1 / N  expansion method has been used by several authors 
(Sukhatme et al 1983, Roy and Roychoudhury 1987, Dutt et al 1986a, b) to determine 
the energy eigenvalues of the Schrodinger equation for some important potentials. So 
far, however the use of this method has been restricted to non-relativistic problems. 
Some time ago Miramontes and Pajares (1984) studied the large- N limit of relativistic 
equations but their result was only applied to the Coulomb problem which is an exactly 
solvable case. 

In the present letter a formalism has been developed to determine the eigenvalues 
of the Dirac equation for radially symmetric scalar potentials assuming the largeness 
of rest energy compared with the relativistic corrections. Though the formalism applies 
for any radially symmetric scalar potential, numerical results are obtained for the one 
proportional to r. The confining potential for quarks being predominantly Lorentz 
scalar, a scalar potential of the form U = hr  has been used by several authors (Rein 
1977, Gunion and Li 1975, Critchfield 1976) to explain the J / $  spectrum and hence 
accurate numerical values exist for comparison with our results. 

Mathematically the scalar potential is easier to treat because if we keep only 
first-order relativistic corrections then the effective potential can easily be treated by 
the usual non-relativistic 1 / N  expansion method. The Dirac equation for a scalar 
potential U(r )  can be written in the following N-dimensional form 

d U  
4r2 ) d r  

-[(m+ U ) * -  W'] G = -  F 

and 

-[(m+ U ) * -  W'] 
( Nj - 2)  ( Nj - 2 - 2s )  ($- 4 r 2  

where we have used the Dirac spinors (we have taken h = c = 1) 

t On leave of absence from the Indian Statistical Institute, Calcutta 700035, India. 
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and 

N, = N + 2j. 

Equations (1) and (2) can be written in the form 

d G  x ( W +  m + U)F=-+- G 

d F  x 
d r  r 

d r  r 

(- W + m +  U)G=--- F 

(4) 

where 

x = is( N, - 2). 

When 

s = + l  N = 3  x = I  
and when 

s = - 1  N = 3  x=-(1+1) ( 8 b )  

then ( 5 )  and (6) reduce to the usual equations for a scalar potential. 
Now eliminating F and writing W = E + m, we get from (5) and (6) 

d2G '('+ ')  G = ( U'+ 2mU - E 2  - 2Em)G + 
dr2 r2 2 m + E + U  d r  d r  r 

1 -(-+-G). d U  d G  x (9) 

For U(r )  of the form U( r )  = hr, (9) can be simplified further by expanding 1/(2m + E + 
U) in the form (1/2m) [ 1 - (E + U)/2m +. . .]. The contribution by the term propor- 
tional to ( E  + U)/4m2 being of higher order can be evaluated as a correction after the 
leading-order calculation has been done following the usual I /  N expansion method. 
Neglecting terms proportional to (E + U)/4m2 we have, from (9), 

where 

e =  E2+2Em-h2/16m2 ( loa)  

V(r)= A2r2+2hmr+~h /2mr  (lob) 

and 

where in analogy with the usual 1/N expansion method 

k =  N+21. (10d) 

Equation (10) easily yields to the usual non-relativistic 1/ N shifted expansion 
method and since this has been discussed in detail by Sukhatme er a1 (1984) we only 
quote the results here. The radial equation (10) is written in terms of the shifted 
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variable E =  k - a  and then the leading contribution to the energy comes from the 
effective potential 

where ro is so chosen that a Veff/dr = 0 at r = r,, which leads to 

where Q = E'. Note that we have kept the term ,yA/2mr in the effective potential 
though its contribution is much less than the rest of the effective potential. This was 
done because one can then follow the non-relativisitic 1/ N expansion method without 
any change in the formalism and since we are interested in terms only up to O ( A / m 2 ) ,  
this prescription is correct up to that order. 

2 r i ~ ' (  ro) = Q (12) 

The next contribution to the energy term is 
E 
7 [ ( n + f ) w  -f(2-a)].  
r0 

The shift a is so chosen as to make this correction vanish. This choice of a gives the 
correct energy value for non-relativistic Coulomb and harmonic oscillator potentials 
as pointed out by Imbo er a1 (1984). Here w is given by 

Higher-order corrections have been given elsewhere (see, for example, Imbo et a1 
1984). In the following we give a collection of formulae required to calculate the 
energy eigenvalues. ro is given by the root of the equation 

N + 21 - 2 + ( 2n, + 1) ( 3 + 7 rr;!;))l'2 = (2 r i  V'( ro))"' 

The energy e is given by an expansion in powers of I l k ;  where E =  N + 2 1  - a  
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r: V (  ro) r t  V I ' (  ro) 
E4=:+ 

6Q 24Q 
E3 = -1 + 

From e the eigenvalue E is then calculated from the relation ( loa) .  We list our 
energy eigenvalues for various energy states and from some values of I in tables 1-3 
and compare them with numerical results obtained by Rein (table 1) and by Gunion 
and Li for the energy levels of the J / $  spectrum for a linear potential (tables 2 and 3). 

It is clear from tables 1-3 that our results are in very good agreement with the 
numerical results given by Rein (1977) and Gunion and Li (1975). As is expected the 
agreement is best when the value of m / J A  is the highest. Thus the shifted 1 / N  
expansion works well for a Dirac scalar potential of the form V (  r )  = Ar. 

Table 1. Energy eigenvalues (in GeV) of the ground state and two excited s states as well 
as the first p state. The values given in parentheses are those given by Rein (1977). W is 
the total energy, W = E + m. 

m / J A  WoIJA W p l J A  W,/JA W d J A  

1 2.334 3.049 3.283 3.962 

4 5.08 1 5.556 5.846 6.437 
(5.08) (5.58) (5.85) (6.44) 

6 6.973 7.398 7.673 8.222 
(6.98) (7.40) (7.67) (8.22) 

(2.40) (3.00) (3.32) (3.99) 

- 

Table 2. Dirac results for part of the J / $  spectrum calculated after a model of Gunion 
and Li (1975) with A = 0.137 GeV', m = 1.12 GeV and j = l+ i .  The values in parentheses 
are those given by Gunion and Li. All energy values are in GeV. 

n, 0 1 2 3 

0 3.106 

1 3.698 

2 4.152 

3 4.535 
(4.545) 

4 4.874 

(3.103) 

(3.7) 

(4.158 j 

(4.886) 

3.449 
(3.442) 
3.948 

(3.946) 
4.359 

(4.36) 
4.717 

(4.72) 
5.038 

(5.043) 

3.733 
(3.725) 
4.175 

(4.170) 
4.553 

(4.551 j 
4.889 

(4.89) 
5.195 

(5.198) 

3.982 
(3.973) 
4.383 

(4.377) 
4.736 

(4.732 j 
5.054 

(5.053) 
5.345 

(5.346) 
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Table 3. Dirac results for part of the J / J /  spectrum after Gunion and Li (1975) with 
A =0.137 GeV2 m = 1.12GeV and j = I - ; .  The values in parentheses are those obtained 
by Gunion and Li (1975). All energy values are in GeV. 

n, 1 2 3 4 

0 3.471 

1 3.954 

2 4.370 
(4.374) 

3 4.726 
(4.731) 

4 5.045 
(5.053) 

(3.47) 

(3.965) 

3.760 

4.194 
(4.194) 
4.568 

(4.560) 
4.902 

(4.95) 
5.205 

(5.21) 

(3.757) 
4.010 

(4.006) 
4.406 

(4.403) 
4.754 

(4.753) 
5.069 

(5.07) 
5.359 

(5.361) 

4.236 
(4.23) 
4.600 

(4.597) 
4.920 

(4.926) 
5.228 

5.507 
- 

(5.506) 
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